Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry.

نویسندگان

  • Albrecht Gruhler
  • Waltraud X Schulze
  • Rune Matthiesen
  • Matthias Mann
  • Ole N Jensen
چکیده

Quantitative analysis of protein expression is an important tool for the examination of complex biological systems. Albeit its importance, quantitative proteomics is still a challenging task because of the high dynamic range of protein amounts in the cell and the variation in the physical properties of proteins. Stable isotope labeling by amino acids in cell culture (SILAC) has been successfully used in yeast and mammalian cells to measure relative protein abundance by mass spectrometry. Here we show for the first time that proteins from Arabidopsis thaliana cell cultures can be selectively isotope-labeled in vivo by growing cells in the presence of a single stable isotope-labeled amino acid. Among the tested amino acids ([2H3]-leucine, [13C6]arginine, and [2H4]lysine), [13C6]arginine proved to be the most suitable. Incorporation of [13C6]arginine into the proteome was homogeneous and reached efficiencies of about 80%. [13C6]Arginine-labeled A. thaliana suspension cells were used to study the regulation of glutathione S-transferase expression in response to abiotic stress caused by salicylic acid and to identify proteins that bind specifically to phosphorylated 14-3-3 binding motifs on synthesized bait peptides in affinity purification experiments. In conclusion, the combination of stable isotope labeling of plant cells and mass spectrometry is a powerful technology that can be applied to study complex biological processes that involve changes in protein expression such as cellular responses to various kinds of stress or activation of cell signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative and absolute quantitative shotgun proteomics: targeting low-abundance proteins in Arabidopsis thaliana.

The plant system is a highly dynamic structure on all molecular levels, transcripts, proteins, and metabolites. Thus, protein analysis has to cope with a highly dynamic range of concentrations. A severe problem is the detection of low-abundance proteins in the presence of housekeeping proteins. Basically three approaches are facilitated to measure protein abundance in a comprehensive manner: 2D...

متن کامل

Hydroponics on a chip: analysis of the Fe deficient Arabidopsis thylakoid membrane proteome.

The model plant Arabidopsis thaliana was used to evaluate the thylakoid membrane proteome under Fe-deficient conditions. Plants were cultivated using a novel hydroponic system, called "hydroponics on a chip", which yields highly reproducible plant tissue samples for physiological analyses, and can be easily used for in vivo stable isotope labeling. The thylakoid membrane proteome, from intact c...

متن کامل

A new dimethyl labeling-based SID-MRM-MS method and its application to three proteases involved in insulin maturation

The absolute quantification of target proteins in proteomics involves stable isotope dilution coupled with multiple reactions monitoring mass spectrometry (SID-MRM-MS). The successful preparation of stable isotope-labeled internal standard peptides is an important prerequisite for the SID-MRM absolute quantification methods. Dimethyl labeling has been widely used in relative quantitative proteo...

متن کامل

Stable isotope labeling in zebrafish allows in vivo monitoring of cardiac morphogenesis.

Quantitative proteomics is an important tool to study biological processes, but so far it has been challenging to apply to zebrafish. Here, we describe a large scale quantitative analysis of the zebrafish proteome using a combination of stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS). Proteins derived from the fully labeled fish were used as a standard to quantify ch...

متن کامل

A quantitative analysis of Arabidopsis plasma membrane using trypsin-catalyzed (18)O labeling.

Typical mass spectrometry-based protein lists from purified fractions are confounded by the absence of tools for evaluating contaminants. In this report, we compare the results of a standard survey experiment using an ion trap mass spectrometer with those obtained using dual isotope labeling and a Q-TOF mass spectrometer to quantify the degree of enrichment of proteins in purified subcellular f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 4 11  شماره 

صفحات  -

تاریخ انتشار 2005